
Instant Distribution of Updates
to Hundreds of Millions of Users

Zbyněk Šlajchrt, slajchrt@avast.com
Lukáš Karas, karas@avast.com

Agenda

•Introduction
•Architecture & Design
•Optimizations
•Conclusion
•Q & A

User Base & Requirements

•~200M installed clients
•~35M online
•Update delivery time ASAP (< 5min)
•Update packet size 1-10kB
•Update frequency ~200 per day

Pull vs. Push
•Pull

– PROS: Existing distribution, simple
– CONS: Danger of SYN flood,
 minimal control over connected clients

•Push
– PROS: Better control over clients,
 kept-alive connections => less SYNs
– CONS: Unproven technology,
 lack of experience, complex

Decision Criteria
• How many connections can we keep

on one server?

– Less than 1M => Pull
– Otherwise Push

Prototype

System Configuration
•CentOS 6
•Max open file descriptors (startApp.sh)

ulimit -n 3000000
•System wide settings for file descriptors

(/etc/sysctl.conf)
fs.nr_open = 6291456
fs.file-max = 6291456

•System wide limit for open files per user
(/etc/security/limits.conf)
hard nofile 6291456

Distribution model

Client/Server Communication

Commands
UPDATE – to carry the update packet to clients
NOP – Heartbeat command
REJECT – to balance the load
SHUTUP – to silence “misbehaving”

 or obsolete clients
ECHO – to diagnose the connections

 to clients
WAKEUP – similar to Google cloud messaging

 for Android
– addresed to specific client
– helps decrease load on other
 services

Communication
Long-held sessions on
servers (comet, PUSH)

Distributor

Under the Hood – Netty
•Asynchronous event-driven network

application framework written in Java
•Very good performance thanks to NIO and

underlying epoll or kqueue kernel
functions

•Easy programming model

Netty's Non-Blocking I/O

Concurrency optimizations
• is safe but expensive synchronizedsynchronized is safe but expensive

Thread priorities
•Instead of controlling workload

programatically we played with adjusting
thread priorities

•Scheduler does the job for us

Thread.currentThread()
 .setPriority(Thread.MAX_PRIORITY);

•Non-root processes can't increase thread
priority...

JVM Workaround
•Workaround:

– Bypassing Java permissions check
– Mapping Java priorities explicitly to system „niceness“

-XX:+UseThreadPriorities
-XX:ThreadPriorityPolicy=42
-XX:JavaPriority10_To_OSPriority=0
-XX:JavaPriority9_To_OSPriority=1
...

Heartbeat period histogram

Dynamic heartbeat

• NOP command
• Frequency evaluated

for each client
• Heartbeat period varies

from 2 to 30 minutes
• Reduces reconnection

attempts from 5k/sec
to 600/sec (8 times less)

Java Heap
•Our app heap can consume up to 20 GiB
•One server handles up to 2 M clients in peak

=> we can't allocate buffer bigger than 10 KiB
 per client

•The solution is a chunked HTTP response
with shared chunk buffer...
– first chunk is user specific header
– second is shared update package

Message chunks
HTTP Headers
...
Transfer-Encoding: chunked

HTTP content

Client specific header

Payload data

First chunk
Relatively small (< 1 KiB)
Allocated for each client

Second chunk carries command data
Relatively big (~ 10 KiB)
It can be shared among clients

Application supports HTTP 1.1 and 1.0
for compatibility with some proxies

Direct buffers

Kernel TCP memory
•How much memory does TCP stack use?

•Is there some limit?

*Memory values are in pages (4 KiB) !

1399963 pages is ~5GiB*

$ cat /proc/net/sockstat
sockets: used 1500997
TCP: inuse 1178915 orphan 6078 tw 729 alloc 1506876 mem 1399963
UDP: inuse 10 mem 2
UDPLITE: inuse 0
RAW: inuse 0
FRAG: inuse 1 memory 960

$ cat /proc/sys/net/ipv4/tcp_mem
Low: 500000 (2GB) Pressure: 1200000 (4.5GB) Max: 1400000 (5.3GB)

Bandwith Limiter
•Protects kernel’s socket memory from

exhaustion => dropping packets by kernel
•Limiter watches the memory used by TCP

stack and compares it with the pressure limit
•In case of big packets the distribution rate

may exceed the bitrate contracted with the
provider

•Limiter calculates the distribution rate
on-the-fly and compares it with the
predefined max bitrate

Bandwith Limiter

System Configuration
•Current deployment

– 26 servers (~2M clients and 3Gbps bandwidth each)
– Up to 40Gbps of distribution traffic
– 15k users per second turnaround

•Other usability
– Can send any commands to the clients
– Used for the service AccessAnywhere

•Threat of a self-induced DDoS
– An outage can cause “DDoS” (2M/s SYN packets)

Connected clients (all nodes)

Distribution time

•Time is in miliseconds.
•The graph represents the delay between the reception

of the update and the transfer to the outgoing TCP
buffers in the kernel for all connected clients.

Connected clientsConnected clients

TCP throughputTCP throughput

TCP memoryTCP memory

Conclusion
1.Focus on synchronization and concurrency

issues (lock-free algorithms, CAS)
2.Tune the JVM with respect to the

underlying operating system.
3.Adaptive behavior of the application

toward the clients.
4.Application must be seen in the context of

the underlying system. Using as much
information from the system as possible.

Questions or Answers

Links
•Avast @ Github: https://github.com/avast
•Code sample:

 https://gist.github.com/Karry/5291694

